博客
关于我
概率统计_最大似然估计直观解释
阅读量:660 次
发布时间:2019-03-15

本文共 518 字,大约阅读时间需要 1 分钟。

概率统计_最大似然估计

概率统计是数据科学和统计学中的核心领域之一,它关注于通过分析数据来推断随机事件的发生规律。其中,最大似然估计是一项经典的统计方法,广泛应用于参数估计和模型选择中。

最大似然估计的基本思想是,在给定观测数据的情况下,寻找一个参数值,使得观察到的数据出现的概率最大化。这个估计方法的核心在于最大化似然函数,即找到使得样本数据出现的概率最大的参数值。与其他估计方法如矩估计不同,最大似然估计具有较强的鲁棒性,且在很多应用中表现优于其他方法。

在实际应用中,最大似然估计常常用于参数估计。例如,在一元二次模型中,假设有n个观测值:y1,y2,...,yn,随机误差服从正态分布N(θ,σ²),最优参数估计量可以通过最大似然估计得到。最大似然估计的结果通常为无偏估计量,其协方差矩阵也可以通过数组方法计算。

此外,最大似然估计还具有良好的通用性,可以应用于多种统计模型,如泊松回归、丢番图回归和指数回归等。在这些模型中,最大似然估计通过对观测数据构建似然函数,并对其求导数,找到极值点来实现参数估计。

总的来说,概率统计中的最大似然估计是一种强大的工具,它通过最大化数据的似然性来推断参数,广泛应用于统计模型的建立与应用。

转载地址:http://qwrmz.baihongyu.com/

你可能感兴趣的文章
NIO Selector实现原理
查看>>
nio 中channel和buffer的基本使用
查看>>
NIO三大组件基础知识
查看>>
NIO与零拷贝和AIO
查看>>
NIO同步网络编程
查看>>
NIO基于UDP协议的网络编程
查看>>
NIO笔记---上
查看>>
NIO蔚来 面试——IP地址你了解多少?
查看>>
NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
查看>>
NISP国家信息安全水平考试,收藏这一篇就够了
查看>>
NIS服务器的配置过程
查看>>
Nitrux 3.8 发布!性能全面提升,带来非凡体验
查看>>
NiuShop开源商城系统 SQL注入漏洞复现
查看>>
NI笔试——大数加法
查看>>
NLog 自定义字段 写入 oracle
查看>>
NLog类库使用探索——详解配置
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
NLP 模型中的偏差和公平性检测
查看>>
Vue3.0 性能提升主要是通过哪几方面体现的?
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>